

i

Automated	 magnetic	 resonance	 image	 processing	 workbench	 for	
Alzheimer’s	 disease-‐related	 research	 and	 diagnosis	
	
Author: Sami Andberg

Master's Programme in Health Informatics
Spring Semester 2014
Degree thesis, 30 Credits

Author: Sami Andberg
Co-supervisor: Assoc. prof. Tze-Yun Leong, School of Computing, National University of Singapore
Co-supervisor: Assoc. prof. Panagiotis Papapetrou, Dept. of Computer and Systems Sciences, Stockholm University
Examiner: Prof. Sabine Koch, Dept. of Learning, Informatics, Management and Ethics, Karolinska Institutet
Examiner: Prof. Uno Fors, Dept. of Computer and Systems Sciences, Stockholm University

 ii

Master's Programme in Health Informatics
Spring Semester 2014
Degree thesis, 30 Credits

	
Affirmation	
	
I hereby affirm that this Master thesis was composed by myself, that the work
contained herein is my own except where explicitly stated otherwise in the text.
This work has not been submitted for any other degree or professional
qualification except as specified; nor has it been published.

Singapore, 2014-05-15

Sami	 Andberg	 	

 iii

Master’s Programme in Health Informatics
Spring Semester 2014
Degree thesis, 30 Credits
	
	
Automated	 magnetic	 resonance	 image	 processing	 workbench	 for	
Alzheimer’s	 disease-‐related	 research	 and	 diagnosis	

Abstract	 	

Background: Dementia-related diseases, especially Alzheimer’s disease, are
affecting growing number of people as the average life span increases. However
the manual processing of magnetic resonance brain images (MRI) needed for
research or diagnostic purposes is often laborious and time consuming, which
limits, for example, the possibilities of doing advanced machine learning on large
datasets of patient data.
Objective: The objective of this thesis project was to evaluate the suitability of
available free and open source tools for automating the MRI processing and
dementia-related analysis by setting up an example implementation, and then
comparing the results to the state of the art in the domain area.
Methods: The selected research method for the project was explorative feasibility
study, which enabled time to be spent testing the tools, setting up the
environment, developing the needed scripts and evaluating the usefulness and
predictive results of the end product.
Results: An example implementation was set up using the free Nipype framework
and other related processing tools. A machine learning implementation was also
set up to demonstrate and evaluate the possibilities of automated data analysis of
the processing results.
Conclusion: The implementation shows that it is possible to build functional
workflows using available free and open source tools, but the setup process is
time consuming and requires both content knowledge and programming
experience. The machine learning results of the implemented example solution
were well below the results presented in state of the art papers, and as such the
example solution cannot be considered diagnostically beneficial in its current
state.

Keywords: Dementia, Alzheimer Disease, Magnetic Resonance Imaging,
Artificial Intelligence, Computer Assisted Image processing

iv

Acknowledgements

I would like to thank all of my supervisors for their important feedback and suggestions.
Warm gratitude goes also to all of the members of Medical Computing Laboratory at the
School of Computing at the National University of Singapore for making me feel a part
of the lab for the exchange period, especially recognizing the contributions of Parvathy
Sudhir Pillai, who outlined the initial workflow model and provided assistance and
additional results related to the thesis work along the way, and Cristina Altomare for
rigorious testing. My warm appreciation and thanks also for the staff at the National
Neuroscience Institute in Singapore, who acted as the client for this project and came up
with important observations and suggestions for the work. Thanks are also in order for
John Ashburner and Giullaume Flandin from the Wellcome Trust Centre for
Neuroimaging at UCL for the access to the closed beta version of SPM Standalone. And
finally, thanks for all of the staff and students at Karolinska Institutet’s and Stockholm
University’s joint health informatics master’s program for the fun times, and for
Karolinska Institutet for the special opportunity and financial support to facilitate the
exchange studies and thesis work in Singapore.

For Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Data used in preparation of this thesis were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public- private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University of
California – San Francisco. ADNI is the result of efforts of many co- investigators from a broad range of
academic institutions and private corporations, and subjects have been recruited from over 50 sites across the
U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals, people with early or late MCI, and people with early
AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.
Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date
information, see www.adni-info.org.

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award
number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb
Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its
affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development
LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical
Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in
Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and
the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San
Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern
California.

 v

Table of Contents

1. Introduction .. 1	

1.1 Background information .. 1	
1.1.1 Dementia and Alzheimer’s disease .. 1	
1.1.2 Magnetic Resonance Imaging ... 1	

1.2 Problem description .. 2	
1.3 Research aim and objectives .. 2	
1.4 Research questions ... 2	

2. Methods .. 3	
2.1 Research approach ... 3	
2.2 Development and prototyping environment .. 3	
2.3 Image processing and analysis tools ... 3	

2.3.1 Nipype framework .. 4	
2.3.2 SPM8 Standalone with Matlab runtime ... 4	
2.3.3 Other tools utilised by the development environment 4	
2.3.5 Planned workflow structure .. 4	

3.1 Workflows designed .. 5	
3.1.1 Image pre-processing workflow .. 6	
3.1.2 Image processing workflow .. 7	
3.1.3 Image co-registration and analysis workflows ... 8	

2.5 Machine learning .. 9	
2.3 Data collection ... 9	
2.6 Ethical considerations .. 10	

3. Results .. 11	
3.1 Workflow efficiency versus manual execution ... 11	
3.2 Machine learning results .. 13	
3.3 Analysis .. 14	

3.3.1 Image pre-processing ... 14	
3.3.2 Image processing ... 15	
3.3.3 Image analysis ... 16	
3.3.4 Machine learning .. 16	

3.4 Other contributions from the thesis project .. 17	
4. Discussion ... 18	

4.1 Discussion on methods .. 18	
4.1.1 Limitations ... 18	

4.2 Existing solutions ... 19	
4.3 Future development .. 19	

5. Conclusion .. 21	

 vi

References .. 22	
Appendices ... 25	

Appendix A – Adding acpcdetect-interface for Nipype .. 25	
Appendix B – Adding modulate-parameter for CreateWarped interface in Nipype 27	
Appendix C – Adding get_totals -tool for Nipype ... 28	
Appendix D – Scripts for generating MySQL tables and views 32	
Appendix E – Modifications for the SVM integration ... 33	
Appendix F – Example pre-processing workflow ... 34	
Appendix G – Example processing workflow ... 36	
Appendix H – Example co-registering workflow .. 39	
Appendix I – Example analysis workflow ... 41	
Appendix J – Test environment install script .. 43	

List of Figures

Figure 1: Initially proposed structure for the workflow .. 5	
Figure 2: Final structure for the three workflows developed .. 5	
Figure 3: Pre-processing workflow ... 6	
Figure 4: Processing workflow .. 7	
Figure 5: Co-registration and Analysis workflows, including the sub-workflow for iterating over
subjects .. 8	

List of Images

Image 1: Example slice of a MR-image to be processed ... 14	
Image 2: Example of image calibrated on anterior commissure ... 14	
Image 3: Example of extracted brain (i.e. after skull removal) ... 15	
Image 4: Example of normal grey matter segmentation result. ... 15	
Image 5: Example of normal white matter segmentation result .. 15	
Image 6: Example of corrupted grey matter segmentation result. ... 15	
Image 7: Example of template image .. 16	
Image 8: Example of subject's flowfield ... 16	
Image 9: Example of normalised GM image ... 16	

List of Tables

Table 1: Demographics of the test data set (a subset of ADNI MRI). ... 10	
Table 2: Tools selected for Pre-processing, processing and analysis steps in the final workflows. 11	
Table 3: Pre-processing steps and related durations .. 12	
Table 4: Processing steps and related durations .. 12	
Table 5: Analysis steps and related durations .. 13	
Table 6: Results of SVM classification for Alzheimer's patients (AD) and healthy controls (HC) 14	

 vii

List of Abbreviations

AC Anterior commissure – a brain region often used as origin for image calibration
AD Alzheimer’s disease
BET Brain extraction tool, part of FSL package
CSF Cerebrospinal fluid – the liquid in the brain filling the empty cavities in the skull
DARTEL DARTEL is part of SPM package, used to make templates and flowfields.
DICOM Digital imaging and communications in medicine - refers to a related picture format.
DJANGO Python-based framework for web programming
FSL FMRIB Software Library – a package for brain image processing
GM Grey matter – area packed with the neuronal cell bodies and synapses
MATLAB A high level programming, computing and visualisation tool.
MNI Montreal Neurological Institute – refers to ‘MNI standard space’ for brain images.
MR Magnetic resonance (see MRI)
MRI Magnetic resonance imaging – a method for acquiring images of brain physiology
NIFTI Neuroimaging informatics technology initiative - refers to a related file format NIfTI-1.
NIPYPE Neuroimaging in Python: Pipelines and Interfaces – a tool for automating workflows
ROI Region of Interest
SPM Statistical parametric mapping – a brain image-processing package for Matlab
SVM Support vector machine
T1 MRI technique for brain imaging, often utilised for capturing structural images
VBM Voxel-based morphometry
VPN Virtual private networking
WM White matter – brain area consisting mostly of myelinated axons

 1

1. Introduction

1.1 Background information

1.1.1 Dementia and Alzheimer’s disease
In a world where average life span is increasing, dementia is a growing concern for disability
in the late years of live. According to a Global Burden of Disease -report from 2013, the
prevalence of dementia-related disability adjusted life years almost doubled (increase of
99.3%) from 1990 to 2010 (1). A recent meta-study estimated that from the global population
of people over 60 year years old there were 35.6 million people living with dementia, which
would give it a prevalence between 5% to 7% in most regions of the world (2). This amounts
to an estimated global dementia-related cost to society in the order of US$600 billion
annually, with most of the costs occurring in western Europe and North America (3). A
Delphi consensus study on dementia predicts, that in the near future the biggest increase of
dementia cases will occur in southern Asia and western Pacific region (including India and
China), and with a growth of over 300% this area would soon surpass western Europe as the
area with most dementia cases in absolute numbers (4).

Clinically dementia is categorized as a neurodegenerative disease, which can be subdivided
into different subtypes, the most common ones being Alzheimer’s disease and vascular
dementia (5). Other common forms of dementia include frontotemporal dementia, alcohol
related dementia and dementia with Lewy bodies, among others. In this thesis, the focus is on
Alzheimer’s disease as it has the greatest prevalence, but the used approach and tools should
also be usable for other types of dementia as well.

1.1.2 Magnetic Resonance Imaging

Neuroscientific imaging often requires quite a lot of processing in order to extract meaningful
data from the acquired images. In this thesis project the imaging modality utilised was
magnetic resonance imaging (MRI) where patients’ head is placed inside a large imaging
machine, which induces a strong magnetic field onto a specific part of the brain, and the
observes and records the phenomenon where the molecules, taken out from their initial state
by the magnetic field, rebound after the magnetic field is released. There are many different
MR imaging techniques, which emphasise different aspects of brain physiology. The image
processing as utilised in this thesis in relation to Alzheimer’s disease classification is based on
the property of the T1-weighted MR-images to show different types of brain matter in
different intensities; grey matter (GM) dominated areas, i.e. the neuronal bodies and synapses,
are darker, white matter (WM) areas, the myelinated connections going mainly between
different brain areas, are lighter, and the hollow cavities, which are filled with cerebrospinal
fluid (CSF), are the darkest. This makes it possible to use different algorithms to
automatically process and extract certain types of data from the images.

 2

1.2 Problem description
General practitioners, as being the physician most often meeting the patient, can be assumed
to be in a good position for diagnosing dementia due to their access to the patient, but they
contribute to roughly half of the dementia diagnosis in the areas studied in the US (6). A study
on general practitioners’ knowledge and skills about dementia diagnosis and management
found out, that one third of participating physicians expressed concern about their diagnostic
skills related to dementia (7). Thus it could be beneficial, if there would be an automated tool
that could provide some decision support in the subject area.

It has been stated, that “the past 25 years have seen a revolution in imaging technology and
with it a revolutions of in vivo analysis of neuropathological changes” when referring to
dementia pathology in structural neuroimaging (8). Along with the improved magnetic
resonance imaging (MRI) technologies there have been proof-of-concept trials on using
automated processing of the magnetic resonance brain images, and the results have been
encouraging (9,10). A study of automatically estimating the volumetric data over patients’
segmented brain images and overlaying it on the image itself was seen having significant
impact on diagnostic confidence on forced-choice Alzheimer’s disease diagnosis (11). Thus
automation could possibly contribute with the decision support assistance sometimes needed
in this area.

1.3 Research aim and objectives
Some of the research published in the area related to processing structural magnetic images is
based on tools that are developed by the scientific community and made freely available for
users. However, even when using these tools, processing patients’ magnetic resonance images
manually one by one for diagnostic or research purposes is a laborious and time-consuming
work, which includes many subtasks utilising multiple tools. Recently new tools have been in
development, which can automate this process of handling different subject’s images and
executing processing steps by calling other tools, one such tool being the Nipype framework
(12).

The aim of this research is to evaluate the feasibility of setting up an automated workflow
using Nipype framework and other free open source tools available, and to evaluate the
usefulness and robustness of the workflow in relation to (Alzheimer’s) dementia diagnosis.
Also the possible contributions of automated workflows to enable new scientific analysis
possibilities are considered.

1.4 Research questions

• Is the Nipype framework and related available free and open source tools developed
enough for providing all the tools needed for building automated MR image
processing workflows for Alzheimer’s diagnosis?

• Can automated Nipype-based MR image processing workflows be beneficial for
Alzheimer’s disease-related diagnosis or research?

 3

2. Methods

2.1 Research approach
The research approach used is this thesis was exploratory feasibility study. The feasibility of
using available free and open source tools for setting up a MR-image processing workbench
was evaluated by trying to construct one such implementation using available tools. For
estimating the beneficial contribution of such a system, the results of an example workflow
process culminating in machine learning –based classification of patient’s images was
observed.

2.2 Development and prototyping environment
There are a number of freely available and widely utilized tools for neuroscientific research.
Many of them are developed using Python or Matlab, and most are working in the Linux
environment. For this reason, the selected platform for the project was also Linux, namely
Ubuntu Desktop 12.04LTS 64-bit distribution, as this allowed the access for the NeuroDebian
repository for easy and convenient installation of many of the tools needed in the project (13).
The initial installation of the virtual machine was done on an Oracle VirtualBox virtualization
environment, but moved to VMware Fusion later on in the project. The approach of using
virtual machines for development and testing was preferred as it allowed easy maintenance of
the testing environment, including taking and storing snapshots of the development system
before any major installations or changes to the environment.

The initial hardware utilised to run and operate the virtual machine was an old Dell desktop
with Core 2 duo processor, 4GB of memory and 256 GB of hard drive. This was later on
deemed insufficient and was replaced with a 13-inch MacBook Pro Retina, late 2013 model
with 2.8GHz Intel Core i7 processor, 16 GB of RAM and a 512 GB solid state drive. The
initial virtual machine setup used was run on 2,5GB of RAM and 2 cores on a 32-bit Ubuntu
version, but as this caused memory run outs when processing larger data sets at once, so a
new 64-bit Ubuntu virtual machine was taken into use with 6GB of memory allocated to the
virtual machine. As most of the intensive calculation in the workflows was executed in the
Matlab+SPM steps, which only utilised 1 core for calculations, allocating two cores to the
virtual machine was deemed enough as adding additional cores would not have speeded up
the related processing steps.

2.3 Image processing and analysis tools
For designing the actual workflows and selecting the free or open source tools for the image
processing and analysis, the author went through related literature and consulted experts in the
field. In the following the main tools selected to be utilised in the thesis setup are described in
some detail.

 4

2.3.1 Nipype framework

Nipype - “a flexible, lightweight and extensible neuroimaging data processing framework in
Python” (12) - is an open source, community-developed tool which enables integrated
workflows among different neuroscience related software packages. This allows automation
and even batch execution of workflows, which can include multiple steps utilizing multiple
different software packages and be run on the local machine or on special clusters. In the test
environment Nipype was utilised to run the workflows and to coordinate the execution and
parameters of other related software.

2.3.2 SPM8 Standalone with Matlab runtime

SPM8 is a widely used tool for neuroscientific medical imaging, which is executed using
Matlab (14,15). While the normal SPM8 package distribution requires a commercially
licenced version of Matlab to run, the authors of SPM8 have also published information of a
closed beta version of SPM8 Standalone, which comes pre-compiled with free Matlab
runtime, and doesn’t require full Matlab suite to run (16). This standalone version was
requested and received from the Wellcome Trust Centre for Neuroimaging at UCL, and it was
the version used in this thesis work unless otherwise stated. The main tools planned to be
utilised from the SPM8 toolbox in the workflow were related to the DARTEL (Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra), including newsegment and
generating templates and processing individual images based on the templates (17).

2.3.3 Other tools utilised by the development environment

Other related tools in the area included MRIcron DCM2NII converter for converting the
original DICOM images to NIfTI-1 format and Bet2 from the FSL package for removing
skull and other unnecessary tissues (18,19). For the calculation of grey matter volumes the
literature suggested Ged Ridgway’s get_totals.m –script, with related masks generated in
Matlab by using WFU PickAtlas (20,21).

Initially a web based user interface (UI) for using the workbench for non-technical end users
was planned to be one major part of the thesis project. However, this was gradually dropped
out due to time constrains. A simple web-based user interface was added back to the project in
the last weeks due to the request of the customer. The main function of the UI setup is to help
demonstrate the system and to act as a guideline implementation to assist in the possible
continuation project. The Django framework was selected as the user interface platform due
to the fact that it is also based on Python, supports MySQL databases and allows fast
prototyping and implementation (22). The example user interface implementation is partly
based on codes adapted from several Django tutorials (23,24). The user interface
implementation is mostly left out of this thesis report, and the codes are not attached as
appendices, but the codes will be made available online (25).

2.3.5 Planned workflow structure

The initial workflow design consisted of running through all the tools observed to be relevant
to the process, as described above. The workflow was initially planned to be based on Nipype
framework, which would be used to automate and initiate the specific tools responsible for
doing the actual processing for each step.

 5

Figure 1: Initially proposed structure for the workflow

3.1 Workflows designed
During the development phase it was found out to be beneficial to break the workflow into
several smaller sub-workflows, which could be independently executed. This would provide
to be useful both for troubleshooting as well as normal usage, especially if there would be
need to process different subgroups from the original data – when using the partial workflows,
it’s possible to do processing once, and still use the data for multiple different processing and
analysis steps.

The tools selected for the workflows were modelled after expert suggestions and literary
sources, with the main processing structure modelled after Ashburner’s often cited VBM
tutorial (32). Excluding the last step - machine learning - all of the steps were executed as a
part of a Nipype workflow. In relation to the initially planned workflow setup, step 2 was
added as a new step, and step 6 was changed to improve the reliability of the results. Their
motivation is presented in the corresponding workflow’s descriptions.

Figure 2: Final structure for the three workflows developed

The	 proposed	 work,low	
Converting	 to	 NIFTI	

Skull	 removal	

Segmenting	 white	 and	 grey	 matter	 and	 CSF	

Making	 Templates	

Creating	 warped	 GM-‐images	

(Coregistering	 ROI	 masks)	

Estimating	 ROI	 volumes	

Machine	 learning	 (SVM)	

Preprocessing	
Images	

Converting	 to	 NIFTI	

Calibrating	 on	 AC	

Skull	 removal	

Segmenting	 white	 and	
grey	 matter	 and	 CSF	

Processing	
Images	

Making	 Templates	

Normalising	 to	 MNI	
space	

Analysis	

(Coregistering	 ROI	
masks)	

Estimating	 ROI	
volumes	

Saving	 results	 to	
MySQL	 database	

 6

3.1.1 Image pre-processing workflow

Figure 3: Pre-processing workflow

The pre-processing workflow consists of four main steps. As the workflow processed an
individual DICOM image set, so if there are three new image sets, the workflow will be run
for three times, once for each image set. In the first processing step (named converter), the
subject’s DICOM image files are converted into a single NIFTI-1 image file – NIFTI-1 being
the file format used throughout the rest of the workflows. In the second step (orient) the
images are automatically oriented by setting the origin on anterior commissure, thus providing
a fixed point of reference for the following tasks. This step was added to the workflow
following a suggestion from the NNI and it was set up using the acpcdetect tool from the ART
package (33). Third step of the workflow (fslbet) is the skull removal, which is responsible for
cleaning out irrelevant aspects of the image, such as skull, nose, eyes and teeth, and leaving
just the intracranial structures, cerebellum and brainstem. In the last pre-processing step the
images are segmented into three different image modalities, namely ones containing only grey
matter (GM), white matter (WM) or cerebrospinal fluid (CSF) per each new image. These
images are then stored to be used as source for the processing workflow.

 7

3.1.2 Image processing workflow

Figure 4: Processing workflow

The processing workflow is centred on the DARTEL process, where a special template is
generated from all subject images involved in the execution of the workflow (15). DARTEL
also generates so called flow fields, indicating how specific images differ from the template.
Both of these data (along with the native grey matter segmentations) are then utilised in the
next step, transforming individual’s previously segmented grey matter image to normalised
MNI-space, MNI standing for Montreal Neurological Institute which defined the MNI brain
atlas used by the SPM tool. MNI space gives general coordinate system that enables
comparison of brain structures between different images. The motivation for this
normalisation is to enable the usage of masks, which are already set in MNI space, in the
analysis workflow.

 8

3.1.3 Image co-registration and analysis workflows

Figure 5: Co-registration and Analysis workflows, including the sub-workflow for iterating over subjects

In the analysis workflow the selected masks are first co-registered to the same resolution as
the images being analysed. Then the co-registered masks are used in the analysis_workflow to
select areas in the MNI-normalised grey matter images to estimate the amount of grey matter
in that area. The totals workflow is executed once per each mask, and each execution is
iterated over all the subjects’ normalised grey matter images. The estimation of volumes was
done by utilising a version of Ged Ridgway’s Matlab SPM script get_totals.m which was
further developed to work with Nipype and in SPM Standalone environment as past of the

 9

thesis work (21)(Appendix C). The resulting grey matter volume estimates are then stored to
the MySQL database table Nipytab as subject, mask, totals –tuple, where totals is the volume
calculated from subject image using the mask.

In the MySQL database exists also another table, Nipydiag, which includes subject identifier
and diagnostic result (0 – healthy control, 1 – Alzheimer’s patient). These results are then
combined in a separate script to build a third view, called Nipyview, which lists all masks as
columns and just one row per subject with the totals in correct columns, and the diagnostic
result as column no 1. This data can then utilised for the machine learning process, which was
left out of the analysis workflow as the same data could be used to execute multiple machine
learning processed.

2.5 Machine learning
Machine learning generally refers to using special algorithms on a certain type of data to
‘learn’ the data in question so that when new similar data is presented, the algorithm could
classify if the new data is similar to a certain group in the already presented data. The
machine learning technique utilised in this thesis is called Support Vector Machine, or SVM,
which takes in numeric data and a classification (here a number denoting if the patient has
Alzheimer’s disease or not) (26). Then the classifier tries to find a way, which could be used
to separate these two groups, and it can then utilise the same method to see which group new
data would belong into.

Initial processing of the input images through the workflows was supposed to result in a
database table, where data from each subject image is expressed with estimated grey matter
volumes for each pre-selected mask. This data provides the base for different kinds of
machine learning approaches. The data is joined with clinical information (whether patient
has Alzheimer’s disease or not), and then exported to a CSV file. The subject identifier is
removed, and the data is then used to teach an SVM classifier that can in turn be used to
review more data and to predict if a new patient (i.e. a set of grey matter volumetric estimates
from the selected areas) should be classified as an AD patient or as a healthy control.

The machine learning implementation was planned to be setu up using the SVM capabilities
based on LIBSVM included in the Scikit-learn bundle (27–29). However, the utilised
machine-learning algorithm could be quite easily interchanged with another, that could use
then be taught and testing using the same data as the input material.

2.3 Data collection
During the workflow testing and development phase, the data used was obtained from
Alzheimer’s Disease Neuroimaging Initiative’s ADNI MRI repository (30). The used
material, which consisted of structural MR images of healthy controls and Alzheimer patients,
was utilized for testing the suitable tools for different operations, and for setting up the
pipeline structure and testing suitable machine learning methods. Due to the long processing
times involved in some of the workflow steps, most of the development and initial testing of
the workflows was executed on a reduced set of ADNI data – demographics reported courtesy
of Parvathy Sudhir Pillai (31).

 10

 AD (22 subjects) HC (25 subjects)

 Mean SD Range Mean SD Range

Age 75.2 7.4 59-88 75.3 5.2 62-85

Table 1: Demographics of the test data set (a subset of ADNI MRI).

2.6 Ethical considerations
As both the image processing and machine learning steps require real data as inputs to give
out relevant results, the work had to be done using real images from real people. In the initial
setting-up phase the images used were from ADNI repository that is available for researchers
by request (30). The National Neuroscience Institute’s own data was supposed to be used for
the final testing of the system, but the data was not approved for this use within the time
frame available for the thesis project. Thus ADNI data was also utilised for the final testing of
the implementation.

The processed data, despite being de-identified by removing personal identification data from
the image files, has still some recognizable aspects (like skull structure), and thus special
attention was paid so that the data would be only stored in encrypted directories on machines,
that only the author had access to, and naturally keeping the computer systems properly up-to-
date with latest malware protection tools and operating system security updates. Some parts of
the research process (especially the long processing runs) were also conducted remotely,
utilising a password-protected, encrypted remote desktop connection within a password-
protected, encrypted VPN tunnel.

When considering using the implementation in a research or clinical setting, it should be taken
into account that the implementation hasn’t been clinically verified or evaluated, and it
shouldn’t be taken as such – the focus of this thesis work was technical, i.e. setting up an
example implementation of the workflow using free and open source tools. More work is
needed for testing the actual accuracy and diagnostic correctness of the framework.

 11

3. Results

3.1 Workflow efficiency versus manual execution

 Step Tool used

1 Convert DICOM files into NIfTI-1 Dcm2nii

2 Image orientation based on anterior commissure ART Acpcdetect

3 Skull removal FSL Bet2

4 Segmentation of image into white matter (WM),
grey matter (GM) and cerebrospinal fluid (CSF)

 SPM NewSegment

5 Create a template from selected of images SPM DARTEL

6 Normalizing images to Montreal Neurological
Institute (MNI) space

 SPM DARTEL Norm2MNI

7 Co-registering region of interest (ROI) masks
(generated earlier)

 SPM Coregister

8 Estimate grey matter volumes in selected
regions of interest

 SPM Get_totals

9 Storing results to database MySQL

10 Machine learning from the data Scikit-learn (LIBSVM)

Table 2: Tools selected for Pre-processing, processing and analysis steps in the final workflows.

The results presented in this chapter were acquired by running a subset of ADNI data
including Alzheimer’s patients’ and healthy controls’ magnetic resonance images. Observed
results were the lengths of different processing steps and the classifier results from the
machine-learning phase. The results are also compared to estimated manual processing times,
as reported by Dr. Ming-Ching Wen from the National Neuroscience Institute.

 12

Pre-processing step O(n) Duration of
processing per subject

Conversion of images from DICOM to NIfTI-1 seconds

Orientation on anterior and posterior
commissure

seconds

Skull removal seconds

Segmentation minutes

Table 3: Pre-processing steps and related durations

The execution of the pre-processing workflow took minutes per subject, with most of the time
being spent in the segmentation step. As a comparison, manual processing takes less than a
minute per subject for both of the first two steps, while the two last steps take two days for a
group of 70 patients. On comparison, automated processing times for a group of 70 patients
should be 70 subject * less than 5 minutes/subject = less than 350 minutes, which is under six
hours i.e. much less than in the manual condition.

Processing step O(n) Duration of
processing per subject

Creating template tens of minutes

Normalising to MNI space minutes

Table 4: Processing steps and related durations

The processing workflow took the longest of all of the workflows, as the generation of
template took tens of minutes per subject – for larger processing runs this can amount up to
several days. The normalising step is noticeably faster than the template generation. Manual
processing for 70 subjects takes about 5 hours for template creation and less than an hour to
normalising. This is quite equal to the automatic processing times, as in both cases the same
SPM functions are executed just once per each step, and the manual work overhead consists
only of selecting the associated input files and initiating the tasks.

 13

Analysis step O(n) Duration of processing
per subject

Co-registering masks tens of seconds
(per mask, i.e. not per subject)

Estimating volumes seconds per mask

Saving to database less than a second

Table 5: Analysis steps and related durations

The analysis workflow execution was fast compared to the other workflows, with co-
registering taking tens of seconds per mask, while all other steps were executed at or below
seconds per subject -scale. When doing the processing manually the co-registering and
volume estimation steps both take less than a minute per subject, while saving the values
takes tens of seconds per subject. Excluding the co-registration step (which is not scaled by
the number of subjects but by the number of used masks), doing the processing using the
automated workflow could cut away about half of the processing time, as the processing run
for 70 patients would take approx. 30 sec + 5 sec = 35 sec per subject, which is clearly less
than up to two minutes taken by the manual process.

3.2 Machine learning results
The machine learning results described are based on a subset of ADNI data (22 advanced
Alzheimer’s patients and 25 healthy controls), and a set of masks, namely medial temporal
gyrus (Left-L & Right-R), entorhinal cortices (L & R), hippocampal formation (L & R),
nucleus accumbens (L & R), middle occipital gyrus (L & R), parahippocampal gyrus (L & R),
medial temporal gyrus (L & R), inferior frontal gyrus (L & R) and medial fronto-orbital gyrus
(L & R). The execution of the machine learning and testing step was fast, in the order of less
than a second per subject.

The main machine learning method utilised was SVM classifier, and it was evaluated using
10-fold cross-validation. The results of the fully automated workflow were also compared to
the machine learning results from the same initial images and masks executed using a manual
method, where the same steps were performed for each of the same subjects one at a time in
Matlab environment – including the training and evaluating of the SVM classifier (manual
processing results courtesy of Parvathy Sudhir Pillai (31)).

 14

Workflow
execution
method

Precision
AD

Recall
AD

Precision
HC

Recall
HC

Automatic 0.771 0.713 0.792 0.828

Manual 0.786 0.708 0.750 0.764

Table 6: Results of SVM classification for Alzheimer's patients (AD) and healthy controls (HC)

3.3 Analysis
The results presented are based on the subject of ADNI-data mentioned earlier (22 AD
patients and 25 healthy controls). Using this dataset to evaluate the performance of the
workflow and especially the machine-learning phase can be a bit problematic as a larger
dataset would be better. However due to time constrains the results are presented for this
smaller dataset.

Image 1: Example slice of a MR-image to be

processed

Image 2: Example of image calibrated on

anterior commissure

3.3.1 Image pre-processing

During the development and testing phases many ADNI images were used to test different
parts of the workflows as well as complete workflows. In pre-processing the images go
through a number of different processes. Especially the segmentation step proved to be
problematic, as roughly 20% of images seemed to manifest corrupted grey matter
segmentation results. In the example dataset, 7 AD patients’ and 4 healthy controls’ images
were corrupted and removed after pre-processing workflow before running the image
processing workflow. The reason for this might be related to the fact that ADNI data contains

 15

images taken with different MRI scanners and with different settings (resolution, spacing,
etc.). This would require more detailed attention to be paid to map out the problem so that the
subjects’ images could be executed throughout all workflows without the need for manual
quality control.

Image 3: Example of extracted brain (i.e.

after skull removal)

Image 4: Example of normal grey matter

segmentation result.

Image 5: Example of normal white matter

segmentation result

Image 6: Example of corrupted grey matter

segmentation result.

3.3.2 Image processing

Image processing workflow is the most calculation-intensive from all of the workflows, with
most of the time in the generation of DARTEL templates. This single step in the workflow
could take for many hours when processing larger number of images, as building the template
is iterated many times over. The normalisation of subject’s grey matter images to MNI space
is based on the flowfields generated in the previous step.

16

Image 7: Example of template image

Image 8: Example of subject's flowfield

Image 9: Example of normalised GM image

3.3.3 Image analysis

The analysis workflow is the fastest of the workflows. At the end of the workflow, the
MySQL database is populated with the data of grey matter volumes for each mask per each
subject’s masked area. Additional script is then required to run to generate the MySQL view
where the data is arranged in a format suitable for the machine-learning tool. This view then
needs to be exported by using a third script. These are attached to the report, but not yet
automatically executed from the workflow (Appendix D, E).

3.3.4 Machine learning

The obvious finding from the machine learning step is the huge difference between manual
and automatic processing results, which shouldn’t be possible as the same steps were
supposed to be carried out in the same way in both occasions. Thus it is reasonable to suspect
that in one of the methods, some step was carried out differently or perhaps some default
parameter of one of the used programs was different between the environments so that even
when all of the entered parameters were the same, the result was different due to different

 17

defaults. This discrepancy calls out for more detailed observation and comparison of the
automatic and manual processing steps and results, and casts an uncertainty shadow over the
whole automatic pipeline implementation if the accuracy of the processing cannot be trusted.

3.4 Other contributions from the thesis project
The months doing the thesis work at Medical Computing Laboratory amounted up to more
than just this thesis report. An example environment for processing the MR-images was
developed, consisting of the used tools, workflows, and other related scripts for database and
web front end. Although not fully completed, the example environment was outlined in a set
of rough setup scripts and instructions which could be used to build new test or development
instances, for example on virtual machines. A conference paper on the framework was also
written for the APAMI 2014 conference by the author in collaboration with Parvathy Sudhir
Pillai and Tze-Yun Leong – not yet published (31).

While the thesis work utilised available free open source tools, there were some requirements
in the planned workflow that were not possible to achieve with the available tools as such. To
meet this need, additions and alterations were made for the source code of some of the tools,
and also some new interfaces and scripts were constructed. Selected ones of these were
offered back to the community via related discussion forums and GitHub pull requests. By the
time of writing this, some additions have already been approved and included into the official
Nipype codebase and distribution (34). Detailed list of all codes and scripts generated during
the thesis process can be found at the appendixes at the end of this thesis report, and some of
the codes are also planned to be made publicly available to download at the thesis GitHub
project folder (25).

 18

4. Discussion

4.1 Discussion on methods
The method of this thesis was exploratory feasibility study, and thus most of the time was
spent setting up and developing the test environment including the software setup and script
and workflow design to see if it would be possible to set up a working solution within the
time period. This part of the process took much more time than initially anticipated, and thus
the actual testing of the environment was done hastily at the last moments of the project. The
user interface, which was initially considered to be one major part of the project, was also
diminished to just a simple and quite limited proof-of-concept implementation due to time
constrains with the project and as such it was mainly left outside the scope of this thesis
report.

The selection of Linux environment as the development environment was encouraged due to
the fact, that all of the tools used in the workflows were available as ready compiled packages
in Linux. Most of the tools could also be utilised on OSX, but the setup process might require
more time, and some of the tools didn’t have Windows based distributions available. Also, by
utilising Linux also the operating system environment was consistent with the free and open
source ideology that was one of the main aspects related to the research questions in this
thesis. Also, the usage NIfTI-1 file format instead of DICOM for workflow processing was
essential as some of the free and open source tools utilised in the workflows handle only the
NIfTI-1 file format.

Some of the main problems faced with the environment setup were possibly due to the fact
that the author was not previously deeply experienced with Matlab, Python, neuroscience,
machine learning nor MR-image processing beyond brief introduction to some of the topics –
so the whole process can be said to have been a continuous learning experience. Still, taking
this into consideration, the approach of using free and open source tools can be considered
feasible, as it turned out to be doable even with limited prior knowledge in the field and in the
tools and technologies utilised.

4.1.1 Limitations

The problems with the initial set up of the technical tools and the workflows limited the thesis
project approach towards simple prototyping setup, leaving out certain aspects, which could
have been interesting to pursue in more detail. The same applies to the machine-learning
dimension of the project, which also manifested in a simple proof-of-concept implementation,
limiting the possible results that could have been acquired if there would have been more time
to set up multiple different machine learning techniques to be tested and compared. More
attention should also be paid for selecting properly validated and diagnostically relevant
masks for the volumetric estimation as this data forms the base on which the machine learning
processes function on.

 19

4.2 Existing solutions
In the last years there have been many published articles, where MR-images are segmented
and used for SVM classification. The existing work in the area include, for example, papers
by Klöppel et al. and Magnin et al., which utilised quite similar approaches but reported much
higher SVM classifier results in the area of 90% accuracy (35,36). However, even as the
methods used in this area are usually outlined in the articles in a general level, the results
might not be easily replicated because of other evaluators not having access to the same data
or to all of the tools and especially all of the parameters used. The novelty in this thesis is
more in the approach of making all the parts of the process open (including the scripts and
setting used in the thesis work) to enable transparency and to make it possible to re-use and
build upon the work done in the thesis project.

One interesting approach in this field is presented by Miller et al. in their recent paper in
Frontiers in Neuroinformatics (37). Their approach, called BrainClould, uses special
BrainGPS method with DiffeoMaps to enable multimodal structural mapping over different
imaging modalities. They also describe using large representation index in the order of 1000-
10.000 dimensions per patient to enable the usage of multiple machine learning techniques
including Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

PCA was also utilised by Nika et al. in their recently published conference paper about Eigen-
Block Change Detection algorithm (EigenBlockCD) (38). Their system is best suited for
comparing subjects longitudinal images (MRI images taken from the same person in different
times) and calculating the differences of the images directly without requiring any additional
segmentation or preprocessing steps while also taking into account the possible differences
with patient positioning etc. This direct processing method removes the possible bias or other
artifacts or errors that can be produced by taking an image through multiple sequential
processing steps, and their initial results from testing the EigenBlockCD algorithm are
impressive, as it yielded a mean 99.9% correct classification, with 75.6% sensitivity, and
100% specificity in a study of 48 images.

Both of the aforementioned approaches seem very interesting and are definitely something
worth keeping eyes on.

4.3 Future development
It would be interesting to further develop this initial implementation set up in the thesis
process. The product could offer user-friendly web frontend for importing data, selecting and
automating processing steps from multiple different options and routing that data for a
number of machine learning tools. In this way it would be possible and relatively easy to, for
example, compare the predictive values of different masks, or the effects of different
processing parameters. Other machine learning tools could also be conjoined, for example
using AdaBoost with some weak learner tools, or PCA and LDA as they seem to have been
utilised in this field for high quality results. Towards this end, the example codes developed in
the thesis project are published freely to enable end user creativity by helping users in trying
out new novel combinations easily – something that might not happen when setting up the
environment itself requires a lot of work, time and pre-knowledge. The codes as well as this
thesis report are planned to be distributed via GitHub for free for anyone to fix, modify, rip,

 20

criticize and build upon (25). One really interesting potential approach would be to try to add
genetic meta-algorithms to the system to automate the testing of different variations of data
processing and classification tools, thus making an approach which could partly automate the
possibility of finding out novel ways of processing the data while getting confirmedly better
results.

 21

5. Conclusion
This thesis work aimed to find out how feasible it would be to utilise available free and open
source tools to automate processing of MR-images, and to find out is the resulting solution
could be useful for dementia related diagnosis and research, focusing mainly on Alzheimer’s
disease in this case.

The results show that implementing such a workflow is possible and the resulting setup can be
used to process MR images and to do machine learning on the data extracted from the images.
The work also highlights some obstacles and possible problems with the approach – there is
still a need for human intervention to evaluate the setup and possibly double check some
results before they are processed further, as the number of failed segmentation results show.
Also, setting up the test environment and related workflows takes time and required both
programming and content skills. Thus it is the hope of the author, that by publishing the
developed codes and scripts, others might be able to build on that work, and to correct and
expand it, instead of doing the same initial mistakes again.

The approach itself has been proved feasible, and faster than the manual method. To be useful
and reliable for diagnostic or research purposes, the produced environment needs still more
work, including proper validation of all the steps in the workflow, better user interface and
more sophisticated programming implementation which would remove some of the ugly
hacks still present in the current version. Furthermore, the accuracy and predictive powers of
the current machine-learning phase based on the results from the workflow is too low to be
beneficial in the current state of the implementation. The author suspects that there is some
fault still present in the example pipeline that causes the data to be biased, misaligned or
somehow corrupted, as other similar approaches reported in the literature achieved much
better results. Thus, the current technical implementation is feasible but the practical
workflow implementation and the results it provides are not beneficial. However, with more
time and effort, it should be possible to fix the workflow to achieve useful results, and to
improve the user interface to make the system user-friendly and easy to use.

 22

References
1. Institute for Health Metrics and Evaluation. The Global Burden of Disease: Generating Evidence,

Guiding Policy [Internet]. Seattle: IHME; 2013. Available from:
http://www.healthmetricsandevaluation.org/sites/default/files/policy_report/2011/GBD_Generating
Evidence_Guiding Policy FINAL.pdf

2. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a
systematic review and metaanalysis. Alzheimers Dement [Internet]. Elsevier Ltd; 2013 Jan [cited 2014
Jan 23];9(1):63–75.e2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23305823

3. Wimo A, Jönsson L, Bond J, Prince M, Winblad B. The worldwide economic impact of dementia 2010.
Alzheimers Dement [Internet]. 2013 Jan [cited 2014 Feb 4];9(1):1–11.e3. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/23305821

4. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of
dementia: a Delphi consensus study. Lancet [Internet]. 2005 Dec 17 [cited 2014 Jan
22];366(9503):2112–7. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2850264&tool=pmcentrez&rendertype=abstr
act

5. WHO. The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research
[Internet]. Geneva: World Health Organization; 1993 [cited 2014 Feb 10]. Available from:
http://www.who.int/classifications/icd/en/GRNBOOK.pdf

6. Boise L, Camicioli R, Morgan DL, Rose JH, Congleton L. Diagnosing Dementia  : Perspectives of
Primary Care Physicians. Gerontologist. 1999;39(4):457–64.

7. Turner S, Iliffe S, Downs M, Wilcock J, Bryans M, Levin E, et al. General practitioners’ knowledge,
confidence and attitudes in the diagnosis and management of dementia. Age Ageing [Internet]. 2004 Sep
[cited 2014 Feb 10];33(5):461–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15271637

8. Karas G, Scheltens P, Barkhof F. Feature extraction and strategy of analyzing structural neuroimaging in
dementia. Handb Clin Neurol [Internet]. 2008 Jan;89:75–86. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/18631732

9. Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek H. Fully automatic segmentation of the brain
from T1-weighted MRI using Bridge Burner algorithm. J Magn Reson Imaging [Internet]. 2008 Jun
[cited 2014 Jan 22];27(6):1235–41. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3840426&tool=pmcentrez&rendertype=abstr
act

10. Heckemann R a, Hajnal J V, Aljabar P, Rueckert D, Hammers A. Automatic anatomical brain MRI
segmentation combining label propagation and decision fusion. Neuroimage [Internet]. 2006 Oct 15
[cited 2014 Jan 23];33(1):115–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16860573

11. Heckemann R a, Hammers A, Rueckert D, Aviv RI, Harvey CJ, Hajnal J V. Automatic volumetry on
MR brain images can support diagnostic decision making. BMC Med Imaging [Internet]. 2008 Jan [cited
2014 Jan 22];8:9. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2413211&tool=pmcentrez&rendertype=abstr
act

 23

12. Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, et al. Nipype: a flexible,
lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform
[Internet]. 2011 Jan [cited 2014 Jan 15];5(August):13. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3159964&tool=pmcentrez&rendertype=abstr
act

13. Halchenko YO, Hanke M. Open is Not Enough. Let’s Take the Next Step: An Integrated, Community-
Driven Computing Platform for Neuroscience. Front Neuroinform [Internet]. 2012 Jan [cited 2014 Mar
19];6(June):22. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3458431&tool=pmcentrez&rendertype=abstr
act

14. Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, et al. EEG and MEG data analysis in
SPM8. Comput Intell Neurosci [Internet]. 2011 Jan [cited 2014 Jan 21];2011:852961. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3061292&tool=pmcentrez&rendertype=abstr
act

15. Ashburner J. Computational anatomy with the SPM software. Magn Reson Imaging [Internet]. Elsevier
Inc.; 2009 Oct [cited 2014 Mar 20];27(8):1163–74. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/19249168

16. SPM. SPM/Standalone [Internet]. 2013 [cited 2014 Feb 14]. Available from:
http://en.wikibooks.org/wiki/SPM/Standalone

17. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage [Internet]. 2007 Oct 15
[cited 2014 Jan 23];38(1):95–113. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17761438

18. Jenkinson M, Pechaud M, Smith S. BET2: MR-based estimation of brain, skull and scalp surfaces.
Eleventh annual meeting of the organization for human brain mapping. 2005.

19. Rorden C, Karnath H-O, Bonilha L. Improving lesion-symptom mapping. J Cogn Neurosci [Internet].
2007 Jul;19(7):1081–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17583985

20. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and
cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage [Internet]. 2003 Jul [cited
2014 Mar 22];19(3):1233–9. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S1053811903001691

21. Ridgway G. get_totals.m [Internet]. 2007. Available from:
http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m

22. Django [Internet]. Available from: https://djangoproject.com

23. Ravindran A. Building a blog in 30 mins with Django (Screencast HD) [Internet]. YouTube. 2012.
Available from: http://www.youtube.com/watch?v=srHZoj3ASmk

24. Palén A. minimal-django-file-upload-example [Internet]. GitHub; 2013. Available from:
https://github.com/axelpale/minimal-django-file-upload-example

25. Andberg S. NipyUbu - codes for master’s thesis [Internet]. 2014. Available from:
https://github.com/andsam/dsv_thesis

26. Hearst M, Dumais S, Osman E. Support vector machines. … Syst their … [Internet]. 1998 [cited 2014
May 15]; Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=708428

 24

27. Chang C-C, Lin C-J. LIBSVM: A Library for Support Vector Machines. ACM Trans Intell Syst Technol
[Internet]. 2011 Apr 1 [cited 2014 Mar 19];2(3):1–27. Available from:
http://dl.acm.org/citation.cfm?doid=1961189.1961199

28. Pedregosa F, Varoquaux G. Scikit-learn: Machine learning in Python. … Mach Learn … [Internet]. 2011
[cited 2014 Apr 12];12:2825–30. Available from: http://dl.acm.org/citation.cfm?id=2078195

29. MySQL [Internet]. Available from: http://www.mysql.com

30. Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging [Internet]. 2008 Apr [cited 2014
Feb 10];27(4):685–91. Available from: http://onlinelibrary.wiley.com/doi/10.1002/jmri.21049/full

31. Andberg S, Pillai PS, Leong TY. MRI Image Processing Workbench for Alzheimer’s Disease
Classification. Indian J Med Informatics. 2014;

32. Ashburner J. VBM Tutorial [Internet]. 2010. p. 1–14. Available from:
http://www.fil.ion.ucl.ac.uk/~john/misc/VBMclass10.pdf

33. Ardekani BA, Bachman AH. Model-based Automatic Detection of the Anterior and Posterior
Commissures on MRI Scans. Neuroimage. 2009;46(3):677–82.

34. Ghosh SS, Gorgolewski CF. Nipype source code on GitHub [Internet]. Available from:
https://github.com/nipy/nipype

35. Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, et al. Automatic classification
of MR scans in Alzheimer’s disease. Brain [Internet]. 2008 Mar [cited 2014 Apr 30];131(Pt 3):681–9.
Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2579744&tool=pmcentrez&rendertype=abstr
act

36. Magnin B, Mesrob L, Kinkingnéhun S, Pélégrini-Issac M, Colliot O, Sarazin M, et al. Support vector
machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology
[Internet]. 2009 Feb [cited 2014 Mar 28];51(2):73–83. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/18846369

37. Miller MI, Faria A V, Oishi K, Mori S. High-throughput neuro-imaging informatics. Front Neuroinform
[Internet]. 2013 Jan [cited 2014 Mar 24];7(December):31. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3865387&tool=pmcentrez&rendertype=abstr
act

38. Nika V, Babyn P, Zhu H. Change detection of medical images using dictionary learning techniques and
PCA. Proc SPIE [Internet]. 2014. p. 903506–14. Available from: http://dx.doi.org/10.1117/12.2038751

 25

Appendices

Appendix A – Adding acpcdetect-interface for
Nipype

The new interface added to local nipype copy for utilizing the acpcdetect –tool from ART. Code
available at: https://github.com/andsam/nipype/blob/thesis_additions/nipype/interfaces/acpcdetect.py

nipype/interfaces/acpcdetect.py
...	 ...	 @@	 -‐0,0	 +1,45	 @@	

	 	 1	 +from	 nipype.interfaces.base	 import	 (

	 	 2	 +	 	 	 	 TraitedSpec,	

	 	 3	 +	 	 	 	 CommandLineInputSpec,	

	 	 4	 +	 	 	 	 CommandLine,	

	 	 5	 +	 	 	 	 File	

	 	 6	 +)	

	 	 7	 +from	 nipype.interfaces.traits_extension	 import	 isdefined	

	 	 8	 +import	 os	

	 	 9	 +	

	 	 10	 +class	 ACPCInputSpec(CommandLineInputSpec):	

	 	 11	 +	 	 	 	 infile	 =	 File(desc="Infile",	 exists=True,	 mandatory=True,	 argstr='-‐i	 %s')	

	 	 12	 +	 	 	 	 outname	 =	 File(genfile=True,	 desc="outfile",	 position=	 -‐1,	 argstr='-‐o	 %s')	

	 	 13	 +	

	 	 14	 +class	 ACPCOutputSpec(TraitedSpec):	

	 	 15	 +	 	 	 	 outfile	 =	 File(desc	 =	 "Outfile",	 exists	 =	 True)	

	 	 16	 +	

	 	 17	 +class	 ACPCDetect(CommandLine):	

	 	 18	 +	 	 	 	 input_spec	 =	 ACPCInputSpec	

	 	 19	 +	 	 	 	 output_spec	 =	 ACPCOutputSpec	

	 	 20	 +	 	 	 	 cmd	 =	 'acpcdetect'	

	 	 21	 +	

	 	 22	 +	 	 	 	 def	 _list_outputs(self):	

	 	 23	 +	 	 	 	 	 	 	 	 outputs	 =	 self.output_spec().get()	

	 	 24	 +	 	 	 	 	 	 	 	 outputs['outfile']	 =	 self.inputs.outname	

	 	 25	 +	 	 	 	 	 	 	 	 if	 not	 isdefined(outputs['outfile']):	

	 	 26	 +	 	 	 	 	 	 	 	 	 	 	 	 outputs['outfile']	 =	 os.path.abspath(self._gen_outfilename())	

	 	 27	 +	 	 	 	 	 	 	 	 else:	

	 	 28	 +	 	 	 	 	 	 	 	 	 	 	 	 outputs['outfile']	 =	 os.path.abspath(outputs['outfile'])	

 26

	 	 29	 +	 	 	 	 	 	 	 	 return	 outputs	

	 	 30	 +	

	 	 31	 +	 	 	 	 def	 _gen_filename(self,	 name):	

	 	 32	 +	 	 	 	 	 	 	 	 if	 name	 is	 'outname':	

	 	 33	 +	 	 	 	 	 	 	 	 	 	 	 	 return	 self._gen_outfilename()	

	 	 34	 +	 	 	 	 	 	 	 	 else:	

	 	 35	 +	 	 	 	 	 	 	 	 	 	 	 	 return	 None	

	 	 36	 +	

	 	 37	 +	 	 	 	 def	 _gen_outfilename(self):	

	 	 38	 +	 	 	 	 	 	 	 	 name	 =	 os.path.basename(self.inputs.infile)	

	 	 39	 +	 	 	 	 	 	 	 	 return	 'ac_'	 +	 name	 	

	 	 40	 +	

	 	 41	 +if	 __name__	 ==	 '__main__':	

	 	 42	 +	

	 	 43	 +	 	 	 	 acd	 =	 ACPCDetect(infile='an_existing_file')	

	 	 44	 +	 	 	 	 print	 acd.cmdline	

	 	 45	 +	 	 	 	 acd.run()	

 27

Appendix B – Adding modulate-parameter for
CreateWarped interface in Nipype

Listing of changes implemented for the interfaces/spm/preprocess.py and contributed to the main
Nipype codebase via the Nipype GitHub pull request #827:
https://github.com/nipy/nipype/pull/827/commits

nipype/interfaces/spm/preprocess.py
	 @@	 -‐1084,6	 +1084,8	 @@	 class	 CreateWarpedInputSpec(SPMCommandInputSpec):	

1084	 1084	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 field='crt_warped.K')	

1085	 1085	 	 	 	 	 	 interp	 =	 traits.Range(low=0,	 high=7,	 field='crt_warped.interp',	

1086	 1086	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 desc='degree	 of	 b-‐spline	 used	 for	 interpolation')	

	 	 1087	 +	 	 	 	 modulate	 =	 traits.Bool(field='crt_warped.jactransf',	

	 	 1088	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 desc="Modulate	 images")	

1087	 1089	 	 	

1088	 1090	 	 	

1089	 1091	 	 class	 CreateWarpedOutputSpec(TraitedSpec):	

	 @@	 -‐1127,8	 +1129,12	 @@	 def	 _list_outputs(self):	

1127	 1129	 	 	 	 	 	 	 	 	 	 outputs['warped_files']	 =	 []	

1128	 1130	 	 	 	 	 	 	 	 	 	 for	 filename	 in	 self.inputs.image_files:	

1129	 1131	 	 	 	 	 	 	 	 	 	 	 	 	 	 pth,	 base,	 ext	 =	 split_filename(filename)	

1130	 	 	 -‐	 	 	 	 	 	 	 	 	 	 	 	 outputs['warped_files'].append(os.path.realpath('w%s%s'	 %	 (base,	

1131	 	 	 -‐	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ext)))	

	 	 1132	 +	 	 	 	 	 	 	 	 	 	 	 	 if	 isdefined(self.inputs.modulate)	 and	 self.inputs.modulate:	

	 	 1133	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 outputs['warped_files'].append(os.path.realpath('mw%s%s'	 %	 (base,	

	 	 1134	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ext)))	

	 	 1135	 +	 	 	 	 	 	 	 	 	 	 	 	 else:	

	 	 1136	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 outputs['warped_files'].append(os.path.realpath('w%s%s'	 %	 (base,	

	 	 1137	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ext)))	

1132	 1138	 	 	 	 	 	 	 	 	 	 return	 outputs	

1133	 1139	 	 	

1134	 1140	 	 	

	 	
These additions were made early in the thesis process, when the workflow still utilized CreateWarped
method instead of DARTEL Norm2MNI which replaced it in later versions (as the masks are already in
MNI space).

 28

Appendix C – Adding get_totals -tool for Nipype

The get_totals –tool is a modification from Ged Ridgway’s get_totals.m, which is available
from: http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m

The original script is a Matlab function, and as such not usable with the free SPM Standalone
version, so the script was modified and implemented as a Nipype SPM tool to provide same
functionality also on SPM Standalone with the added benefit of becoming usable as part of a
workflow. The version below also includes some extra functionality to make workflow
processing more convenient. Code can be found at:
https://github.com/andsam/nipype/blob/thesis_additions/nipype/interfaces/spm/model.py

Additions to nipype/interfaces/spm/model.py
	 @@	 -‐230,6	 +230,86	 @@	 def	 _list_outputs(self):	

230	 230	 	 	 	 	 	 	 	 	 	 return	 outputs	

231	 231	 	 	

232	 232	 	 	

	 	 233	 +class	 GetTotalsModelInputSpec(SPMCommandInputSpec):	

	 	 234	 +	 	 	 	 in_image	 =	 File(exists=True,	 desc='moludated	 warped	 image	 to	 analyse',	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 copyfile=False,	 mandatory=True)	

	 	 235	 +	 	 	 	 in_mask	 =	 File(exists=True,	 desc='binary	 mask	 to	 use',	 copyfile=False,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 mandatory=False)	

	 	 236	 +	 	 	 	 #threshold	 still	 not	 implemented	

	 	 237	 +	

	 	 238	 +class	 GetTotalsModelOutputSpec(TraitedSpec):	

	 	 239	 +	 	 	 	 total_volume	 =	 traits.Float()	

	 	 240	 +	 	 	 	 subject	 =	 traits.Str()	

	 	 241	 +	 	 	 	 mask	 =	 traits.Str()	

	 	 242	 +	

	 	 243	 +class	 GetTotals(SPMCommand):	

	 	 244	 +	 	 	 	 """Uses	 Ged	 Ridgway's	 get_totals.m	 -‐based	 script	 to	 estimate	 	
	 	 	 	 	 the	 volume	 of	 matter	 in	 masked	 area	 of	 image	

	 	 245	 +	

	 	 246	 +	 	 	 	 http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m	

	 	 247	 +	

	 	 248	 +	 	 	 	 Examples	

	 	 249	 +	 	 	 	 -‐-‐-‐-‐-‐-‐-‐-‐	

	 	 250	 +	 	 	 	 >>>	 gett	 =	 GetTotals()	

	 	 251	 +	 	 	 	 >>>	 gett.inputs.in_image	 =	 'structural.nii'	

	 	 252	 +	 	 	 	 >>>	 gett.inputs.in_mask	 =	 'mask.nii'	

	 	 253	 +	 	 	 	 >>>	 out	 =	 gett.run()	 #	 doctest:	 +SKIP	

	 	 254	 +	 	 	 	 >>>	 print	 out.outputs.total_volume	 #	 doctest:	 +SKIP	

	 	 255	 +	 	 	 	 """	

 29

	 	 256	 +	

	 	 257	 +	 	 	 	 input_spec	 =	 GetTotalsModelInputSpec	

	 	 258	 +	 	 	 	 output_spec	 =	 GetTotalsModelOutputSpec	

	 	 259	 +	

	 	 260	 +	 	 	 	 def	 _make_matlab_command(self,	 _):	

	 	 261	 +	 	 	 	 	 	 	 	 """validates	 spm	 options	 and	 generates	 job	 structure	

	 	 262	 +	 	 	 	 	 	 	 	 """	

	 	 263	 +	 	 	 	 	 	 	 	 script	 =	 "%	 generated	 by	 nipype.interfaces.spm\n"	

	 	 264	 +	 	 	 	 	 	 	 	 script	 +=	 "%	 based	 on	 Ged	 Ridgway's	 get_totals.m	 –	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m\n"	

	 	 265	 +	 	 	 	 	 	 	 	 script	 +=	 "files	 =	 '%s';\n"	 %	 self.inputs.in_image	

	 	 266	 +	 	 	 	 	 	 	 	 if	 isdefined(self.inputs.in_mask):	

	 	 267	 +	 	 	 	 	 	 	 	 	 	 	 	 script	 +=	 "msk	 =	 '%s';\n"	 %	 self.inputs.in_mask	

	 	 268	 +	 	 	 	 	 	 	 	 script	 +=	 """	

	 	 269	 +if	 (~exist('thr',	 'var')	 ||	 isempty(thr))	

	 	 270	 +	 	 	 	 thr	 =	 -‐inf;	 %	 default	 to	 include	 everything	 (except	 NaNs)	

	 	 271	 +end	

	 	 272	 +if	 ~exist('msk',	 'var')	

	 	 273	 +	 	 	 	 msk	 =	 1;	 %	 default	 to	 include	 everything	

	 	 274	 +end	

	 	 275	 +	

	 	 276	 +if	 ischar(msk)	

	 	 277	 +	 	 	 	 msk	 =	 spm_vol(msk);	

	 	 278	 +end	

	 	 279	 +if	 isstruct(msk)	

	 	 280	 +	 	 	 	 msk	 =	 spm_read_vols(msk);	

	 	 281	 +end	

	 	 282	 +msk	 =	 msk	 ~=	 0;	

	 	 283	 +	

	 	 284	 +vols	 =	 spm_vol(files);	

	 	 285	 +N	 =	 length(vols);	

	 	 286	 +	

	 	 287	 +t	 =	 zeros(N,1);	

	 	 288	 +for	 n	 =	 1:N	

	 	 289	 +	 	 	 	 vsz	 =	 abs(det(vols(n).mat));	

	 	 290	 +	 	 	 	 img	 =	 spm_read_vols(vols(n));	

	 	 291	 +	 	 	 	 img	 =	 img	 .*	 msk;	

	 	 292	 +	 	 	 	 t(n)	 =	 sum(img(img	 >	 thr))	 *	 vsz	 /	 1000;	 %	 vsz	 in	 mm^3	 (=	 0.001	 ml)	

	 	 293	 +end	

	 	 294	 +	

	 	 295	 +fprintf('totals	 =	 %f\\n',t);	

 30

	 	 296	 +"""	

	 	 297	 +	 	 	 	 	 	 	 	 return	 script	

	 	 298	 +	

	 	 299	 +	 	 	 	 def	 aggregate_outputs(self,	 runtime=None):	

	 	 300	 +	 	 	 	 	 	 	 	 outputs	 =	 self._outputs()	

	 	 301	 +	 	 	 	 	 	 	 	 for	 line	 in	 runtime.stdout.split('\n'):	

	 	 302	 +	 	 	 	 	 	 	 	 	 	 	 	 if	 line.startswith("totals	 =	 "):	

	 	 303	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 setattr(outputs,	 'total_volume',	 float(line[len("totals	 =	 "):].strip()))	

	 	 304	 +	 	 	 	 	 	 	 	 setattr(outputs,	 'subject',	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 os.path.splitext(os.path.basename(self.inputs.in_image))[0])	

	 	 305	 +	 	 	 	 	 	 	 	 setattr(outputs,	 'mask',	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 os.path.splitext(os.path.basename(self.inputs.in_mask))[0])	

	 	 306	 +	 	 	 	 	 	 	 	 return	 outputs	

	 	 307	 +	

	 	 308	 +	 	 	 	 def	 _list_outputs(self):	

	 	 309	 +	 	 	 	 	 	 	 	 outputs	 =	 self._outputs().get()	

	 	 310	 +	 	 	 	 	 	 	 	 return	 outputs	

	 	 311	 +	

	 	 312	 +	

233	 313	 	 class	 EstimateContrastInputSpec(SPMCommandInputSpec):	

234	 314	 	 	 	 	 	 spm_mat_file	 =	 File(exists=True,	 field='spmmat',	

235	 315	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 desc='Absolute	 path	 to	 SPM.mat',	

	 (some line brakes added for the code to fit to the word document width)

Also needs ‘GetTotals, ’ to be added into a row in file: nipype/interfaces/spm/__init__.py

	 @@	 -‐7,7	 +7,7	 @@	

7	 7	 	 from	 .preprocess	 import	 (SliceTiming,	 Realign,	 Coregister,	 Normalize,	 Segment,	

8	 8	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Smooth,	 NewSegment,	 DARTEL,	 DARTELNorm2MNI,	

9	 9	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CreateWarped,	 VBMSegment)	

10	 	 	 -‐from	 .model	 import	 (Level1Design,	 EstimateModel,	 EstimateContrast,	 Threshold,	

	 	 10	 +from	 .model	 import	 (Level1Design,	 GetTotals,	 EstimateModel,	 EstimateContrast,	 Threshold,	

11	 11	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 OneSampleTTestDesign,	 TwoSampleTTestDesign,	

12	 12	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 PairedTTestDesign,	 MultipleRegressionDesign)	

13	 13	 	 from	 .utils	 import	 (Analyze2nii,	 CalcCoregAffine,	 ApplyTransform,	 Reslice,	

	

 31

Currently these modifications related to GetTotals are not included into the main Nipype
codebase as the suggestion from developers was to write the whole Matlab code in Python -
which would make it faster to execute - but which was considered a secondary objective as far
as the thesis process is concerned. Due to time constrains the conversion of the algorithm to
python was left out as attention was focused on more pressing issues to get the project
finished within required timeframe.

 32

Appendix D – Scripts for generating MySQL tables
and views
Shell script to make the SQL tables
#!/bin/bash
#to create the database for Nipype SVM mining @20140416/SA
MYSQL=`which mysql`
MKDATAB="nipybas"
MKTABLE="nipytab"
MKUSER="nipyuser"
MKPASS="nipypass"
Q1="CREATE DATABASE iF NOT EXISTS $MKDATAB;"
Q2="GRANT USAGE ON *.* TO $MKUSER@localhost IDENTIFIED BY '$MKPASS';"
Q3="GRANT ALL PRIVILEGES ON $MKDATAB.* TO $MKUSER@localhost;"
Q4="FLUSH PRIVILEGES;"
Q5="USE $MKDATAB;"
Q6="CREATE TABLE $MKTABLE (id INT NOT NULL AUTO_INCREMENT PRIMARY KEY, generated TIMESTAMP,
subject varchar(100), mask varchar(100), totals FLOAT);"
SQL="${Q1}${Q2}${Q3}${Q4}${Q5}${Q6}"
$MYSQL -uroot -p -e "$SQL"

Shell script to make the SQL views (to be run after the table has been populated). Please note,
that a separate SUM(CASE –line is needed for all masks used in the analysis. Generating this
file automatically from within the user interface based on selected masks would be
encouraged, but was left out at this stage due to time constrains.

#!/bin/bash
#to create the database views for Nipype SVM mining @20140417/SA
MYSQL=`which mysql`
MKDATAB="nipybas"
MKTABLE="nipytab"
MKDIAG="nipydiag"
MKUSER="nipyuser"
MKPASS="nipypass"
MKVIEW="nipyview"
Q1="USE $MKDATAB;"
Q2="CREATE TABLE $MKDIAG (id INT NOT NULL AUTO_INCREMENT PRIMARY KEY, generated TIMESTAMP,
subject varchar(100) NOT NULL, disease int);"
Q3="DROP VIEW $MKVIEW;"
Q4="CREATE VIEW $MKVIEW as SELECT d.disease, d.subject, "\
"SUM(CASE t.mask WHEN 'rec28' THEN t.totals END) as ec28, "\
"SUM(CASE t.mask WHEN 'rec34' THEN t.totals END) as ec34, "\
"SUM(CASE t.mask WHEN 'rhfl' THEN t.totals END) as hfl, "\
"SUM(CASE t.mask WHEN 'rhfr' THEN t.totals END) as hfr, "\
"SUM(CASE t.mask WHEN 'rifgl' THEN t.totals END) as ifgl, "\
"SUM(CASE t.mask WHEN 'rifgr' THEN t.totals END) as ifgr, "\
"SUM(CASE t.mask WHEN 'rmefogl' THEN t.totals ELSE NULL END) as mefogl, "\
"SUM(CASE t.mask WHEN 'rmefogr' THEN t.totals ELSE NULL END) as mefogr, "\
"SUM(CASE t.mask WHEN 'rmetg21' THEN t.totals ELSE NULL END) as metg21, "\
"SUM(CASE t.mask WHEN 'rmiogl' THEN t.totals ELSE NULL END) as miogl, "\
"SUM(CASE t.mask WHEN 'rmiogr' THEN t.totals ELSE NULL END) as miogr, "\
"SUM(CASE t.mask WHEN 'rmitgl' THEN t.totals ELSE NULL END) as mitgl, "\
"SUM(CASE t.mask WHEN 'rmitgr' THEN t.totals ELSE NULL END) as mitgr, "\
"SUM(CASE t.mask WHEN 'rnal' THEN t.totals ELSE NULL END) as nal, "\
"SUM(CASE t.mask WHEN 'rnar' THEN t.totals ELSE NULL END) as nar, "\
"SUM(CASE t.mask WHEN 'rphgl' THEN t.totals ELSE NULL END) as phgl, "\
"SUM(CASE t.mask WHEN 'rphgr' THEN t.totals ELSE NULL END) as phgr "\
"FROM $MKDIAG d INNER JOIN $MKTABLE t "\
"ON d.subject = t.subject "\
"GROUP BY d.subject;"
SQL="${Q1}${Q3}${Q4}"
$MYSQL -uroot -p -e "$SQL"

 33

Appendix E – Modifications for the SVM
integration

Shell script for exporting the data from MySQL and removing the subject number column:
#!/bin/bash
#to export data from SQL to CSV for Nipype SVM mining @20140417/SA

MYSQL=`which mysql`
MKDATAB="nipybas"
MKTABLE="nipytab"
MKDIAG="nipydiag"
MKUSER="nipyuser"
MKPASS="nipypass"
MKVIEW="nipyview"
CSVFILE="/tmp/results.csv"
LOCALFILE="results.csv"

Q1="USE $MKDATAB;"
Q2="SELECT * FROM $MKVIEW INTO OUTFILE '$CSVFILE' FIELDS TERMINATED BY ',' LINES
TERMINATED BY '\\n';"

SQL="${Q1}${Q2}"

$MYSQL -uroot -p -e "$SQL"

cp $CSVFILE $LOCALFILE
#and to remove subjects (column no 2)
cut -d, -f-1,3- $LOCALFILE

Python code for testing the svm functionality:
import numpy as np
from sklearn import svm
from sklearn import metrics
from sklearn.cross_validation import train_test_split

data_in = np.loadtxt('results.csv',delimiter=',')
X = data_in[:, 2:]
#X = data_in[:, data_in.str(",",3):]
y = data_in[:, 0]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.1)

clf = svm.SVC(kernel='linear', C=1.0).fit(X_train, y_train)
y_predicted = clf.predict(X_test)

print "Classification report for %s" % clf
print
print metrics.classification_report(y_test, y_predicted)
print
print "Confusion matrix"
print metrics.confusion_matrix(y_test, y_predicted)
print
print "Accuracy"
print metrics.accuracy_score(y_test, y_predicted)

 34

Appendix F – Example pre-processing workflow

import nipype.pipeline.engine as pe

experiment_dir = '/home/medcomplab/workflows'

from nipype.interfaces.utility import IdentityInterface
#from pipeline - first pipeline demo by andsam 2014-04-15

imagelist =
['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','2
1','22','23','24','25','26','27','28','29','30']
imageinfo = dict(imaged=[['imageid']])
imagesource = pe.Node(IdentityInterface(fields=['imageid']), name='imagesource')
imagesource.iterables = ('imageid', imagelist)

from nipype.interfaces.io import DataGrabber
ig = pe.Node(DataGrabber(infields=['imageid'],
 outfields='imaged'),
 name="imagegrabber")
ig.inputs.template = '%s/*.dcm'
#lets skip the dcm2nii and acpcdetect for now
ig.inputs.template_args = imageinfo
ig.inputs.sort_filelist = True
ig.inputs.base_directory = '/home/medcomplab/HCs/'

from nipype.interfaces.dcm2nii import Dcm2nii
converter = pe.Node(Dcm2nii(), name="converter")
converter.inputs.gzip_output = False
converter.inputs.reorient = False
converter.inputs.reorient_and_crop = False

from nipype.interfaces.acpcdetect import ACPCDetect
acpcd = pe.MapNode(ACPCDetect(), name="orient", iterfield=['infile'])

import nipype.interfaces.fsl as fsl
fsl.FSLCommand.set_default_output_type('NIFTI')
fslbet = pe.MapNode(fsl.BET(), name="fslbet", iterfield=['in_file'])

import nipype.interfaces.spm as spm
newseg = pe.MapNode(spm.NewSegment(), name="newseg", iterfield=['channel_files'])
newseg.inputs.matlab_cmd = "/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script"
newseg.inputs.use_mcr = True
pathtobox = '/opt/spm8/spm8_mcr/spm8/toolbox/Seg/TPM.nii'
tissue1 = ((pathtobox, 1), 2, (True,True), (False, False))
tissue2 = ((pathtobox, 2), 2, (True,True), (False, False))
tissue3 = ((pathtobox, 3), 2, (True,False), (False, False))
tissue4 = ((pathtobox, 4), 2, (False,False), (False, False))
tissue5 = ((pathtobox, 5), 2, (False,False), (False, False))
tissue6 = ((pathtobox, 5), 2, (False,False), (False, False))
newseg.inputs.tissues = [tissue1, tissue2, tissue3, tissue4, tissue5, tissue6]

from nipype.interfaces.io import DataSink
dsink = pe.Node(DataSink(), name="Datasink")
dsink.inputs.base_directory = experiment_dir
dsink.inputs.container = '/home/medcomplab/django/'

import nipype.interfaces.io as nio
mysqlt = pe.Node(nio.MySQLSink(input_names=['GM']), name='MySQL')
mysqlt.inputs.database_name = 'nipybas'
mysqlt.inputs.table_name = 'preproc_results'
mysqlt.inputs.username = 'nipyuser'
mysqlt.inputs.password = 'nipypass'

def get1class(dartel_files):
 class1images = []
 for session in dartel_files:
 class1images.extend(session[0])
 return class1images

def get2classes(dartel_files):
 class1images = []

 35

 class2images = []
 for session in dartel_files:
 class1images.extend(session[0])
 class2images.extend(session[1])
 return [class1images, class2images]

def get3classes(dartel_files):
 class1images = []
 class2images = []
 class3images = []
 for session in dartel_files:
 class1images.extend(session[0])
 class2images.extend(session[1])
 class3images.extend(session[1])
 return [class1images, class2images, class3images]

preproc_workflow = pe.Workflow(name="Preprocess_workflow")
preproc_workflow.connect([(imagesource,ig,[('imageid','imageid')])])
preproc_workflow.connect([(ig,converter,[('imaged','source_names')])])
preproc_workflow.connect([(converter,acpcd,[('converted_files','infile')])])
preproc_workflow.connect([(acpcd,fslbet,[('outfile','in_file')])])
preproc_workflow.connect([(fslbet,newseg,[('out_file','channel_files')])])
preproc_workflow.connect([(newseg,dsink,[(('dartel_input_images',get3classes),'images.dartel')
])])
preproc_workflow.connect([(newseg,dsink,[(('native_class_images',get1class),'images.native')])
])
#preproc_workflow.connect([(newseg,mysqlt,[(('dartel_input_images',get1class),'GM')])])

#preproc_workflow.write_graph()
preproc_workflow.run()

 36

Appendix G – Example processing workflow

I
import nipype.pipeline.engine as pe

from nipype import config
config.enable_debug_mode()

experiment_dir = '/home/medcomplab/workflows'
origmasks_dir = '/home/medcomplab/workflows/origmasks/'

from nipype.interfaces.utility import IdentityInterface
from nipype.interfaces.io import DataGrabber

#from pipeline - first pipeline demo by andsam 2014-04-15

imagelist = ['3','4','5']
imageinfo = dict(imaged=[['imageid']])
imagesource = pe.Node(IdentityInterface(fields=['imageid']), name='imagesource')
imagesource.iterables = ('imageid', imagelist)

ig = pe.Node(DataGrabber(infields=['imageid'],
 outfields='imaged'),
 name="imagegrabber",
 iterfield=["imageid"])
ig.inputs.template = 'images/dartel/_imageid_%s/_newseg0/*.nii'
ig.inputs.template_args = imageinfo
ig.inputs.sort_filelist = True
ig.inputs.base_directory = '/home/medcomplab/papaya/segmentation_results/'

ng = pe.Node(DataGrabber(infields=['imageid'],
 outfields='imaged'),
 name="nativegrabber",
 iterfield=["imageid"])
ng.inputs.template = 'images/native/_imageid_%s/_newseg0/*.nii'
ng.inputs.template_args = imageinfo
ng.inputs.sort_filelist = True
ng.inputs.base_directory = '/home/medcomplab/papaya/segmentation_results/'

import nipype.interfaces.spm as spm

def apu(in_val):
 apuri = map(list,zip(*in_val))
 return apuri

def simpleF(in_val):
 return in_val

def simpleD(flowfields,mni,imageid):
 return flowfields,mni

def simpleT(in_val,in_val2,in_val3):
 return in_val, in_val2, in_val3

def getFirst(in_val,temp):
 out_val = []
 for x in xrange(len(temp)):
 out_val.append([in_val[x]])
 return out_val

from nipype.interfaces.utility import Function
joinnode implemented using Function because joinnode on DARTEL causes a crash
combine = pe.JoinNode(Function(input_names=["in_val"],output_names=["out_val"],function=apu),
 name="combine", joinsource="imagesource", joinfield="in_val")

dartel = pe.Node(spm.DARTEL(), name="dartel")
dartel.inputs.matlab_cmd = "/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/

 37

script"
dartel.inputs.use_mcr = True

joiner =
pe.JoinNode(Function(input_names=["in_val"],output_names=["out_val"],function=simpleF),
 name="joiner", joinsource="imagesource", joinfield="in_val")

norm2mni = pe.Node(spm.DARTELNorm2MNI(), name="norm2mni")
norm2mni.inputs.matlab_cmd = '/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script'
norm2mni.inputs.use_mcr = True
norm2mni.inputs.modulate = True

coreg = pe.Node(spm.Coregister(), name="coreg")
coreg.inputs.matlab_cmd = '/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script'
coreg.inputs.use_mcr = True

presink =
pe.MapNode(Function(input_names=["flowfields","mni","imageid"],output_names=["flowfields","mni
"],function=simpleD),
 name="presink",iterfield=["flowfields","mni"])

midsink =
pe.MapNode(Function(input_names=["flowfields","mni","imageid"],output_names=["flowfields","mni
"],function=simpleT),
 name="midsink",iterfield=["flowfields","mni","imageid"])

from nipype.interfaces.io import DataSink
dsink = pe.Node(DataSink(), name="Datasink")
dsink.inputs.base_directory = experiment_dir
dsink.inputs.container = 'processing_results/'

def zipper(dartel_files):
 return zip(dartel_files[0],dartel_files[1])

def get2classes(dartel_files):
 class1images = []
 class2images = []
 for session in dartel_files:
 class1images.extend(session[0])
 class2images.extend(session[1])
 return [class1images, class2images]

def get1classes(dartel_files):
 class1images = []
 for session in dartel_files:
 class1images.extend(session[0])
 return [class1images]

def getclass1images(class_images):
 class1images = []
 for session in class_images:
 class1images.extend(session[0])
 return class1images

def getjustones(class_images):
 return class_images[:1]

process_workflow = pe.Workflow(name="Process_workflow")
process_workflow.connect([(imagesource,ig,[('imageid','imageid')])])
process_workflow.connect([(imagesource,ng,[('imageid','imageid')])])
process_workflow.connect([(ig,combine,[('imaged','in_val')])])
process_workflow.connect([(combine,dartel,[('out_val','image_files')])])
process_workflow.connect([(dartel,norm2mni,[('dartel_flow_fields','flowfield_files'),
 ('final_template_file','template_file')])])

process_workflow.connect([(ng,joiner,[('imaged','in_val')])])
process_workflow.connect([(joiner,norm2mni,[('out_val','apply_to_files')])])
process_workflow.connect([(dartel,dsink,[('final_template_file','dartel.template')])])
process_workflow.connect([(dartel,presink,[('dartel_flow_fields','flowfields')])])
process_workflow.connect([(norm2mni,presink,[('normalized_files','mni')])])
process_workflow.connect([(imagesource,presink,[('imageid','imageid')])])
process_workflow.connect([(presink,dsink,[('mni','mni'),("flowfields","dartel.flowfields")])])

 38

#process_workflow.write_graph()
process_workflow.run()

 39

Appendix H – Example co-registering workflow
This workflow is used to co-register selected masks to the template.

import nipype.pipeline.engine as pe

experiment_dir = '/home/medcomplab/workflows/'

from nipype.interfaces.utility import IdentityInterface
masklist = ['ec28','ec34']
maskinfo = dict(maski=[['maskid']])
masksource = pe.Node(IdentityInterface(fields=['maskid']), name='masksource')
masksource.iterables = ('maskid', masklist)

from nipype.interfaces.io import DataGrabber
mg = pe.Node(DataGrabber(infields=['maskid'],
 outfields='maski'),
 name='maskgrabber')
mg.inputs.template = '/home/medcomplab/masks/%s.nii'
mg.inputs.template_args = maskinfo
mg.inputs.sort_filelist = True
mg.inputs.base_directory = experiment_dir

templist = ['Template_6']
tempinfo = dict(tempi=[['tempid']])
tempsource = pe.Node(IdentityInterface(fields=['tempid']), name='tempsource')
tempsource.iterables = ('tempid', templist)

tg = pe.Node(DataGrabber(infields=['tempid'],
 outfields='tempi'),
 name='tempgrabber')
tg.inputs.template = 'processing_results/dartel/template/%s.nii'
tg.inputs.template_args = tempinfo
tg.inputs.sort_filelist = True
tg.inputs.base_directory = experiment_dir

import nipype.interfaces.spm as spm
import nipype.interfaces.io as nio

def apu(in_val):
 return in_val

from nipype.interfaces.utility import Function
joinnode implemented using Function because joinnode on DARTEL causes a crash
combine = pe.JoinNode(Function(input_names=["in_val"],output_names=["out_val"],function=apu),
 name="combine", joinsource="masksource", joinfield="in_val")

coreg = pe.Node(spm.Coregister(), name="coreg")
coreg.inputs.matlab_cmd = '/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script'
coreg.inputs.use_mcr = True
coreg.inputs.jobtype = 'write'

from nipype.interfaces.io import DataSink
dsink = pe.Node(DataSink(), name="Datasink")
dsink.inputs.base_directory = experiment_dir
dsink.inputs.container = 'processing_results/'

coreg_workflow=pe.Workflow(name="Coregisteration_workflow")
coreg_workflow.connect([(masksource,mg,[('maskid','maskid')])])
coreg_workflow.connect([(tempsource,tg,[('tempid','tempid')])])

coreg_workflow.connect([(tg,coreg,[('tempi','target')])])
coreg_workflow.connect([(mg,combine,[('maski','in_val')])])
coreg_workflow.connect([(combine,coreg,[('out_val','source')])])

coreg_workflow.connect([(coreg,dsink,[('coregistered_source','rmasks')])])

#coreg_workflow.write_graph()
coreg_workflow.run()

 40

 41

Appendix I – Example analysis workflow
This workflow requires either changes to directories or some symbolic linking to be done
after last workflow to execute properly.

import nipype.pipeline.engine as pe

experiment_dir = '/home/medcomplab/workflows/processing_results'

from nipype.interfaces.utility import IdentityInterface
masklist = ['ec28','ec34']
maskinfo = dict(maski=[['maskid']])
masksource = pe.Node(IdentityInterface(fields=['maskid']), name='masksource')
masksource.iterables = ('maskid', masklist)

from nipype.interfaces.io import DataGrabber
mg = pe.Node(DataGrabber(infields=['maskid'],
 outfields='maski'),
 name='maskgrabber')
mg.inputs.template = '/home/medcomplab/masks/r%s.nii'
mg.inputs.template_args = maskinfo
mg.inputs.sort_filelist = True
mg.inputs.base_directory = experiment_dir

imagelist = ['4','5']
imageinfo = dict(imagi=[['imagid']])
imagesource = pe.Node(IdentityInterface(fields=['imagid']), name='imagesource')
imagesource.iterables = ('imagid', imagelist)

ig = pe.Node(DataGrabber(infields=['imagid'],
 outfields='imagi'),
 name='imagegrabber')
ig.inputs.template = 'mni/*.nii'
#ig.inputs.template = 'mni/_imageid_%s/_norm2mni0/*.nii'
ig.inputs.template_args = imageinfo
ig.inputs.sort_filelist = True
ig.inputs.base_directory = experiment_dir

from nipype.interfaces.io import DataFinder
imaf = pe.Node(DataFinder(outfileds='images'), name='imagefinder')
imaf.inputs.root_paths = '/home/medcomplab/workflows/processing_results/mni'
imaf.inputs.match_regex = 'swmc.+\.nii'
imaf.inputs.max_depth = 0
imaf.inputs.min_depth = 0

import nipype.interfaces.spm as spm
import nipype.interfaces.io as nio

def apu(in_val):
 return in_val

from nipype.interfaces.utility import Function
joinnode implemented using Function because joinnode on DARTEL causes a crash
combine = pe.JoinNode(Function(input_names=["in_val"],output_names=["out_val"],function=apu),
 name="combine", joinsource="masksource", joinfield="in_val")

coreg = pe.Node(spm.Coregister(), name="coreg")
coreg.inputs.matlab_cmd = '/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script'
coreg.inputs.use_mcr = True

gett = pe.MapNode(spm.GetTotals(), name='GetTotals', iterfield='in_image')
gett.inputs.matlab_cmd = '/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script'
gett.inputs.use_mcr = True

mysqlt = pe.MapNode(nio.MySQLSink(input_names=['subject','totals','mask']), name='MySQL',
iterfield=['totals', 'subject'])
mysqlt.inputs.database_name = 'nipybas'

 42

mysqlt.inputs.table_name = 'nipytab'
mysqlt.inputs.username = 'nipyuser'
mysqlt.inputs.password = 'nipypass'

def getasstring (filepath):
 import os
 return os.path.basename('%s' % filepath)

totals_workflow=pe.Workflow(name="Totals_workflow")
#totals_workflow.connect([(imagesource,ig,[('imagid','imagid')])])
#totals_workflow.connect([(ig, gett, [('imagi','in_image')])])
totals_workflow.connect([(imaf,gett, [('images','in_image')])])
totals_workflow.connect([(gett, mysqlt, [('total_volume','totals'),
 ('subject','subject')])])

analyze_workflow=pe.Workflow(name="Analysis_workflow")
analyze_workflow.connect([(masksource,mg,[('maskid','maskid')])])
analyze_workflow.connect([(mg,totals_workflow,[('maski',
 'GetTotals.in_mask')])])
analyze_workflow.connect([(mg,totals_workflow,[(('maski',getasstring),'MySQL.mask')])])

#analyze_workflow.write_graph()
analyze_workflow.run()

 43

Appendix J – Test environment install script

With this script it is possible to install all needed programs and packages to a new Ubuntu
Desktop 12.04.4 LTS 64-bit environment (to make the system functional, enter then the
changes and additions outlined in previous appendices). Please note, that the URLs for SPM-
standalone package and Matlab Runtime need to be inserted into the script for it to work
properly. The URLs are not included as by the time of writing the thesis, SPM standalone is
still in closed beta testing, and to download it permission needs to be acquired from UCL.

#/bin/sh
echo "Give sudo password if needed - and remember to fix URL before running script!"
sudo echo " Passed!"
echo "Getting system up to date"
sudo apt-get update
sudo apt-get upgrade -y
sudo apt-get update
sudo apt-get dist-upgrade -y
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
echo "Setting up NeuroDebian repositories"
wget -O- http://neuro.debian.net/lists/precise.au.full | sudo tee
/etc/apt/sources.list.d/neurodebian.sources.list
sudo apt-key adv --recv-keys --keyserver pgp.mit.edu 2649A5A9
sudo apt-get update
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
echo "Installing tools: git"
sudo apt-get install -y git
echo "Installing Nipype"
sudo apt-get install -y python-nipype
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
echo "Loading SPM8 standalone packages for a64 (check correct URL!)"
if wget http://FIX-CORRECT-URL-HERE/spm8_r5236.zip; then
 if wget http://FIX-CORRECT-URL-HERE/glnxa64/MCRInstaller.bin; then
 echo "Installing Matlab standalone environment - this might take minutes"
 chmod a+x MCRInstaller.bin
 sudo ./MCRInstaller.bin -silent
 echo "UnZipping SPM8"
 sudo unzip spm8_r5236.zip -d /opt
 echo "Trying to run SPM8 fmri on Matlab runtime - if case of errors, check paths!"
 sudo chmod a+x /opt/spm8/run_spm8.sh
 sudo /opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713 script
 echo "Matlab and SPM installed"
else
 echo "Loading Matlab runtime package failed – please check URL"
 fi
else
 echo "Loading SPM-standalone package failed – please check URL"
fi
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
echo "Installing FSL"
if sudo apt-get install -y fsl-complete; then
 echo "Setting up environment for FSL"
 echo "export FSLDIR=/usr/share/fsl/5.0" >>~/.bashrc
 echo "export FSLOUTPUTTYPE=NIFTI" >>~/.bashrc
 echo "export PATH=/usr/lib/fsl/5.0:\$PATH" >>~/.bashrc
 echo "export LD_LIBRARY_PATH=/usr/lib/fsl/5.0" >>~/.bashrc
 echo ". /usr/share/fsl/5.0/etc/fslconf/fsl.sh" >>~/.bashrc
 echo "Ready!"
else
 echo "There were problems with FSL installation! Please try again!"
fi
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
echo “Setting up environment variables for SPM, FSL and acpcdetect” >~/.bashrc
echo "export SPMMRCCMD=\"/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script\"" >>~/.bashrc

 44

echo "export MATLABCMD=\"/opt/spm8/run_spm8.sh /opt/MATLAB/MATLAB_Compiler_Runtime/v713/
script\"" >>~/.bashrc
echo "export FORCE_SPMMRC=true" >>~/.bashrc
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
echo "Downloading Nipype-Tutorial materials"
wget http://sourceforge.net/projects/nipy/files/nipype/nipype-0.2/nipype-
tutorial.tar.bz2/download
echo Unzipping
tar xvf download
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
wget http://www.nitrc.org/frs/download.php/6494/acpcdetect.tar.gz
mkdir acpcdetect
if cd acpcdetect; then
 tar xvf acpcdetect.tar.gz
 cd ..
fi
sudo apt-get install libstdc++5
echo "export ARTHOME=/home/medcomplab/install/acpcdetect" >>~/.bashrc
echo "export PATH=\$ARTHOME:\$PATH" >>~/.bashrc
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
echo "Installing MySQL and other tools"
sudo apt-get install -y mysql-server
sudo apt-get install -y mysql-client
sudo apt-get install -y python-mysqldb
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
sudo apt-get install -y python-sklearn
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
sudo apt-get install -y python-django
read -t10 -n1 -p "Press ctrl+c to abort - continuing in 10 secs... " key
#echo "Installing PHPMYAdmin"
#sudo apt-get install -y phpmyadmin

echo "Install script finnished, please take a Snapshot of the virtual machine!”

45

